Arabidopsis thaliana alpha1,2-glucosyltransferase (ALG10) is required for efficient N-glycosylation and leaf growth
نویسندگان
چکیده
Assembly of the dolichol-linked oligosaccharide precursor (Glc(3) Man(9) GlcNAc(2) ) is highly conserved among eukaryotes. In contrast to yeast and mammals, little is known about the biosynthesis of dolichol-linked oligosaccharides and the transfer to asparagine residues of nascent polypeptides in plants. To understand the biological function of these processes in plants we characterized the Arabidopsis thaliana homolog of yeast ALG10, the α1,2-glucosyltransferase that transfers the terminal glucose residue to the lipid-linked precursor. Expression of an Arabidopsis ALG10-GFP fusion protein in Nicotiana benthamiana leaf epidermal cells revealed a reticular distribution pattern resembling endoplasmic reticulum (ER) localization. Analysis of lipid-linked oligosaccharides showed that Arabidopsis ALG10 can complement the yeast Δalg10 mutant strain. A homozygous Arabidopsis T-DNA insertion mutant (alg10-1) accumulated mainly lipid-linked Glc(2) Man(9) GlcNAc(2) and displayed a severe protein underglycosylation defect. Phenotypic analysis of alg10-1 showed that mutant plants have altered leaf size when grown in soil. Moreover, the inactivation of ALG10 in Arabidopsis resulted in the activation of the unfolded protein response, increased salt sensitivity and suppression of the phenotype of α-glucosidase I-deficient plants. In summary, these data show that Arabidopsis ALG10 is an ER-resident α1,2-glucosyltransferase that is required for lipid-linked oligosaccharide biosynthesis and subsequently for normal leaf development and abiotic stress response.
منابع مشابه
The ALG10 locus of Saccharomyces cerevisiae encodes the α–1,2 glucosyltransferase of the endoplasmic reticulum: the terminal glucose of the lipid-linked oligosaccharide is required for efficient N-linked glycosylation
The biosynthesis of the lipid-linked oligosaccharide substrate for N-linked protein glycosylation follows a highly conserved pathway at the membrane of the endoplasmic reticulum. Based on the synthetic growth defect in combination with a reduced oligosaccharyltransferase activity (wbp1), we have identified alg10 mutant strains which accumulate lipidlinked Glc2Man9GlcNAc2. We cloned the correspo...
متن کاملThe impacts of TRR14 over-expression on Arabidopsis thaliana growth and some photosynthetic parameters
Background: TRR14 protein is a small member of a multi-gene family in Arabidopsis and is the first ones found during screening of seedlings for their resistant to the trehalose sugar.Objectives: Characterization ofTRR14 over-expressed plants with respect to morphological changes, growth and photosynthesis related parameters.Materials and methods: TRR14gene was isolated from Arabidop...
متن کاملFunctional analysis of glycin rich- RNA binding protein, a suppressor of trehalose-6-phosphate mediating growth arrest in Arabidopsis thaliana
Metabolism of the alpha-1,1 glucose disaccharide, trehalose, is indispensable in plants. In the Murashigeand Skoog (MS) medium, trehalose inhibits plant growth and allocation of carbon to roots. A suppressorof trehalose-6-phosphate (T6P) mediated growth arrest, GR-RBP2, is characterized in more detail.Phylogenetic analysis revealed that GR-RBP2 is a protein of likely prokaryot...
متن کاملمشکلات روشهای موجود و ارائه دو روش جدید کشت هیدروپونیک گیاه آرابیدوپسیس تالیانا
Arabidopsis thaliana is a suitable model plant for genetic and molecular biology studies in higher plants. However, its hydroponic culture for biochemical and physiological studies is a challenge due to small size, capillary roots and little biomass at maturity. Several cultural systems have been suggested for Arabidopsis thaliana hydroponic culture, each having special advantages and disadvant...
متن کاملYeast Two Hybrid cDNA Screening of Arabidopsis thaliana for SETH4 Protein Interaction
SETH4 coding sequence with 2013 bp is a member of gene family expressed in gametophytic tissues of Arabidopsis thaliana. This fragment was PCR amplified using Kod Hi Fi DNA polymerase enzyme. This fragment was cloned into pGBKT7 bate vector and transformed E. coli DH5? cells containing vector were selected on LB medium containing Kanamycin. Finally, pGBKT7-SETH4 bate was transformed into yeast ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 68 شماره
صفحات -
تاریخ انتشار 2011